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Abstract

A fuzzy logic-based state-of-charge meter is being developed for Li-ion batteries for potential use in portable defibrillators. ac impedance
and voltage recovery measurements have been made which are used as the input parameters for the fuzzy logic model. The load pro-
file for the Li-ion battery packs comprises a continuous 1.4 A constant current discharge periodically interrupted by 10 A pulses. As
the battery is cycled the available capacity diminishes and so the number of 10 A pulses that may be delivered decreases. Measure-
ments are being made on a total of three battery packs at three different temperatures (0, 20 and 40°C) and as expected the number
of pulses deliverable by the battery pack diminishes as temperature is decreased. For example, at room temperature the battery pack
was initially able to deliver 42 pulses early in the cycle life whereas at 0°C the battery-pack is only able to initially deliver 12
pulses.

The voltage recovery profile upon removal of the 10 A load has been used both in the time domain and frequency domain to develop fuzzy
logic models to estimate the number of remaining pulses that the battery-pack can deliver. Accurate models are being developed to estimate
the number of pulses that the battery pack can deliver at various stages of its cycle life and at the different temperatures. With sufficient data
collected for the battery packs at room temperature accurate fuzzy logic models have been developed for estimation of state-of-charge and
implemented in the Motorola MC 68HC12 microcontroller.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Indeed, recently all AEDs sold by a particular manufacturer

were removed from the market due to frequent battery failure

The survival rate for patients who suffer sudden cardiac
arrests increases dramatically if the patients are treated within
a few minutes of the cardiac event. In recognition of this
fact, automated external defibrillators (AEDs) are becoming
widely deployed in airports, offices, and among emergency
responders, including firemen and policemen. The most com-
mon failure of AEDs is associated with failure of the battery.
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in the devices [1].

Since 1997, Villanova University and US Nanocorp® Inc.
have collaborated on the development of patented fuzzy
logic-based methods for determining state-of-charge (SOC)
and state-of-health (SOH) of batteries [2,3].

Due to their higher energy densities compared to lead acid
and nickel cadmium chemistries, lithium ion batteries are
being considered for use in AEDs. The aim of the present
project is to design, integrate and develop a fuzzy logic-
based SOC/SOH meter for Li-ion batteries to be used in
AEDs.

The goal will be to be able to take a Li ion battery pack from
storage of unknown condition and using a combination of an
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interrogation method and fuzzy logic data analysis, estimate
both the number of times the battery has been cycled and the
number of pulses it can deliver.

There are three commonly used techniques for interrogat-
ing a battery, namely coulomb counting, voltage recovery and
ac impedance measurements. Each of these is described next
in more detail.

1.1. Coulomb counting

In coulomb counting, the charge flowing into and out of the
battery is monitored and the SOC estimated by determining
how much charge has been removed from the battery com-
pared to how much was available from the previous charging
cycle. If the estimated charge capacity is compensated for
variations in temperature and discharge rate, the coulomb
counting approach can be quite accurate in determining the
SOC of a battery. However, it provides little useful informa-
tion on the SOH of a battery. Nevertheless, this is the standard
technique used for battery monitoring in consumer electronic
devices employing Li-ion batteries, e.g. laptop computers,
camcorders, cellular phones, etc.

1.2. Voltage recovery

In this approach a load is applied to the battery and the
voltage depression under load and the temporal recovery of
the battery voltage after removal of the load are monitored
and used to estimate the SOC/SOH of the battery. Since the
battery is pulsed in an AED (to charge the capacitors that
deliver the high voltage to the electrodes) this method is pre-
ferred since the pulsing circuitry is already built into the AED.
This method is the one we used in the present project.

1.3. ac impedance method

The ac impedance approach involves the measurement of
the ac voltage response of a battery when a small perturbing
ac current is applied to the battery. This is typically done
under open circuit conditions but may also be done on-line.
Usually a single frequency is used and the resulting battery
condition is estimated from the value of the impedance at the
single frequency. This method has been used previously to
measure SOH of Li-ion batteries [4] and we have reported
its use for determining the SOC and SOH of Li-ion batteries
for AED applications [5]. However, although this method can
work well, the additional circuitry required to measure the ac
impedance of the battery adds cost to the AED unit.

In this paper, we describe how voltage recovery profiles in
response to a load stimulus were measured on Li-ion batter-
ies at different SOCs. We then describe fuzzy logic models,
which accurately estimate the SOC from the voltage recov-
ery profile data. Finally, we describe a prototype hardware
implementation of a SOC meter for this application using a
Motorola MC68HC12 microcontroller.

2. Experimental

The Li-ion battery packs characterized in this project com-
prised twelve Sanyo 18650 cells in a 4 series x 3 parallel
arrangement with a 300 m€2 in-line fuse to simulate the pro-
tection circuitry for the battery pack. These battery packs are
to be employed in AEDs and so a recommended discharge
profile comprises two current states. The first current state is
a low, steady current of 1.4 A for heart beat monitoring and
EKG acquisition. The second current load state on the defib-
rillator battery pack is high current pulse discharges of 10 A
to charge capacitors which provide the high voltage pulses to
the paddle electrodes used to electrically stimulate the heart.

A test procedure was implemented to simulate this dis-
charge profile as indicated below:

1. Constant current discharge at 1.4 A for 5 min.

2. Constant current discharge at 10 A for 5s.

3. Repeat this process (steps 1 and 2) for a total of 11005,
which includes three 10 A discharges.

4. ac impedance measurement over frequency range of 1 Hz
to 1kHz.

5. Repeat above four steps until end of discharge is reached
(2.5Veell™h.

Fig. 1 shows a graphical display of the load test profile.

The current discharge was performed using an Agilent
Technologies 6063B electronic load, which in turn was con-
trolled by HPVEE software and monitored by a Solartron
1280B Electrochemical Measurement Unit (EMU). The
Solartron 1280B was used to measure the open circuit volt-
age (OCV) of the battery pack. After the current discharge
was completed an impedance measurement was taken by a
combination of the Solartron 1280B EMU and a Solartron
1290 Power booster (used to increase the voltage range of
the Solartron 1280B.)

Battery packs usually displayed a starting voltage of
around 16.7V and as they deliver high current pulses the
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Fig. 1. Load current profile 1.4 A base with 10 A peaks.
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Fig. 2. Voltage recovery curves for the battery pack 0 °C for 100th cycle.

voltage of the battery pack gradually decreases. The end of
discharge voltage of the battery pack was taken to be 10 V.
When the battery is completely discharged it is recharged by a
Centronix BMS 2000 battery management system. Typically
it takes 150 min to fully charge the battery pack. A Tenney
environmental oven (with digital temperature control) was
used which was employed to perform the measurements at
different temperatures.

2.1. Experimental results

Results obtained are mainly two types of measurements
that are obtained from the test process. They are the voltage
recovery measurements and the Impedance measurements.
Each of them is shown below for a complete cycle of dis-
charge for the battery pack operated at 0 °C, which includes
nine pulses and three impedance measurements.
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Fig. 2 shows the voltage recovery measurements for one
complete cycle of discharge for the battery pack at 0 °C.

A total of nine pulses are shown and it is observed that
the voltage of the battery pack gradually decreases and the
minimum voltage obtained from the battery pack when load
current is 10 A also decreases gradually with increase in the
number of pulses. Fig. 3 shows three ac impedance measure-
ments obtained from the battery pack. As we can see both
in the Complex plot and the Bode plot as the pulse number
increases these curves move down.

3. Fuzzy logic modeling

Before the Fuzzy logic modeling could be performed, the
data was preprocessed to obtain the correct input parameters
for the model.

3.1. Preprocessing

The data obtained from the voltage recovery profiles was
analyzed numerically and two types of curves were obtained
from the analysis: the minimum voltage curves and differ-
ence voltage curves. A minimum voltage curve is the locus
of all the minimum voltage points that are obtained in a single
cycle of the battery pack. Here the minimum voltage corre-
sponds to the minimum voltage of the battery pack at 10 A
load current. A difference voltage point refers to the differ-
ence between the maximum and minimum voltages of the
battery pack. Here maximum voltage refers to the voltage
of the battery pack when load current is 1.4 A just before the
10 A discharge peak. The locus of all these difference voltage
points forms a difference voltage curve. One such minimum
voltage curve and a difference voltage curve exist for one
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Fig. 3. ac impedance measurement—Complex plot to the left (imaginary Z vs. real Z) and Bode plot to the right (|Z], theta vs. frequency).
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Fig. 4. Minimum voltage curves (min. voltage vs. no. of pulses).

cycle of a battery pack. A total of two sets of 80 such curves
which were obtained from the analysis of 80 cycles of data
over the battery pack at 20 °C (room temperature) are used
in this analysis.

Fig. 4 shows a set of minimum voltage curves together
with corresponding cycle numbers. It is observed that as
the cycle number increases these curves monotonically move
down with the cycle number.

Fig. 5 shows a set of difference voltage curves together
with the corresponding cycles numbers. It is observed that
as the cycle number increases these monotonically move up
with the cycle number.

Interestingly, the same type of behavior in minimum volt-
age curves and difference voltage curves was observed at
0°C for these battery packs. By observing the behavior of
the curves shown above it is proved that minimum voltages
and maximum voltages of the battery pack are useful param-
eters in determining the state-of-charge and state-of-health
of the batteries.
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Fig. 5. Difference voltage curves (diff. voltage vs. no. of pulses).

3.2. Modeling

After preprocessing the data, two different sets of param-
eters minimum voltage/4 and maximum voltage/4 were
obtained which correspond to state-of-charge and state-of
health. Here the voltages are divided by 4 in order to reduce
them to the input voltage range for the A/D converter on the
microcontroller (0-5 V).

The Sugeno type of Inference method was adopted for
developing the fuzzy logic model.

For instance—for SOC model:

IF (Minl is Min_1) and (Max1 is Max_1) then SOC is 35

IF (Min2 is Min_n) and (B is Max_n) then SOC is 2
For SOH model:
IF (Minl is Mn_1) and (Max is Mx_1) then SOH is 80

IF (Minl is Mn_n) and (Max is Mx_n) then SOH is 10
3.3. Final fuzzy logic models

Finally, two fuzzy logic models were obtained one for
the state-of-charge and one for the state-of-health. Each of
these models is discussed below. The fuzzy logic toolbox of
Matlab® was used in developing these models.

3.4. Model to predict the state-of-charge

Both training and testing data were obtained from the data
that was collected. The maximum and minimum voltages of
even numbered cycles were used as training data and those
of odd numbered cycles were used as testing data. In order
to generate a fuzzy inference system (FIS), the grid partition
method was used. Here four trapezoidal membership func-
tions were assigned for the first input (maximum voltage/4)
and three trapezoidal membership functions were assigned
for the second input (minimum voltage/4). Figs. 6 and 7 show
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Fig. 6. Training error (0.95).
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the training error and the testing error obtained from the mod-
eling, respectively.

A training error of 0.95 and a testing error of 0.99 are not
significant over a period of 80 cycles. Hence, a good model
to predict the state-of-charge has been developed. The 3D
surface plot between the output and the two inputs is shown in
Fig. 8. The smooth surface indicates that the model developed
has good generalization ability.

3.5. Model to predict the state-of-health

Both training and testing data were obtained from the data
that was collected. The maximum and minimum voltages of
even numbered cycles were used as training data and those
of odd numbered cycles were used as testing data. The grid
partition method was again used to generate the initial fuzzy
inference system (FIS). Here two trapezoidal membership
functions were assigned for the first input (maximum voltage)
and six trapezoidal membership functions were assigned for
the second input (minimum voltage). The SOH model was not
implemented in hardware (because sufficient time for testing
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Fig. 8. 3D surface plot (SOC).
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Fig. 10. Training error (2.655).

the model was not available). Hence the inputs used were
simply the maximum and minimum voltages (not divided
by 4 as in the state-of-charge model.) Figs. 9 and 10 show
the training and testing errors obtained from the modelling,
respectively.

A training error of 2.565 and a testing error of 2.655 are not
significant over a period of 80 cycles and these high power Li-
ion batteries are capable of delivering even up to 450 cycles
in their lifetime. Hence a good model to predict the state-
of-health was developed. The 3D surface plot between the
output and the two inputs is shown in Fig. 11.

4. Implementation of the model in microcontroller
(Motorola MC68HC12)

The fuzzy logic model to estimate the SOC of the
Li-ion AED battery pack, and correspondingly, the num-
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ber of pulses that it may deliver, was implemented in a
Motorola MC68HC 12 microcontroller. This microcontroller
was selected because it includes fuzzy logic instructions in
the instruction set for the processor making it straightforward
to implement fuzzy logic models.

The process that we implemented in the microcontroller
runs parallel to the testing circuit. The testing circuit consists
of an electronic load, a PC to run the electronic load, a step-
down circuit (a voltage divider network and an op-amp), a
breadboard and a battery pack. For testing the battery pack
we extract one pulse from it. The duration of this pulse is for
5 min and 5 s. For 5 min the discharge currentis 1.4 A, and for
5510 A is drawn from the battery pack by the electronic load.
Throughout this process the terminals of the battery where
the voltage is to be monitored are connected to the step-down
circuit and the output from this circuit is fed to the microcon-
troller. The step down circuit is necessary because the input
voltage range of the A/D converter on the microcontroller is
0-5 V. The step-down circuit gives the input voltage divided
by 4 as output. This output is fed to the A/D terminals of
the microcontroller. The testing circuit is shown in Fig. 12
below.

Voltages obtained from this step-down circuit, which are
fed to the microcontroller, are converted into digital signals
by the on-chip A/D converter of the 68HC12 microcontroller

Li ion battery pk R 5 R <R
4
PC to
control the
+
ECload [—T ECload™ L%t:'; leads of
R

Fig. 12. Testing circuit (R=511kS2, Op-amp =LMC60 42 AIN).

and these signals serve as the inputs to the fuzzy logic model.
Fig. 13 shows the timing diagram for the total process. A
flowchart of the program written into the microcontroller to
execute the acquisition of the measured input signals, pro-
cessing of these signals with the fuzzy logic model, and output
of the remaining number of pulses to a liquid crystal (LCD)
display is shown in Fig. 14.

Both the microcontroller and electronic load are switched
on at the same time. As the flow chart of Fig. 14 indicates a
delay program is run for4 min 55 s. This is the time when elec-
tronic load in the testing circuit draws 1.4 A current. There
after the A/D conversion process of the microcontroller starts
and it stores the values for 12 more seconds. This includes
the time when electronic load draws 1.4 A for5s, 10 A for5s
and 1.4 A for 2 more seconds to observe the recovery. There
are 24 values stored in 24 memory locations of the microcon-
troller on chip memory. These are sorted and maximum and
minimum voltages are picked from the collected 24 values.
Now these maximum and minimum voltages serve as inputs
to the fuzzy logic model. The output obtained from the model
is in range OOH-FFH. This is converted to the normal pulse
number range (0—40) and then it is converted to decimal. The
output obtained is shown on LCD display.

The model was implemented practically as shown in
Fig. 14. The complete model including electronic load, Li-
ion battery pack, microcontroller, LCD display, OpAmp step-
down circuit on a bread board and the power supply to the
bread board are shown in Fig. 14.

Voltage
Recovery
Profile
Time 4 minutes 55 seconds 55 |55 [2s
A/D Executes remaining
HC12 o 2 .
Switched ON, Delay Subroutine runs P — algorithm
Electronic Switched ON, 1.4 A discharge Extracts 10 A c?f\;vitchE‘d
Load 6063B Pulse

Fig. 13. Timing diagram of the testing procedure.
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Fig. 14. Flow chart of the main program.

4.1. Testing of the model

The testing of the model involved one complete discharge
cycle (40 pulses) of the battery pack and monitoring the out-
put after every pulse. The battery pack at room temperature
usually delivers 40 pulses. The electronic load draws one
pulse for 5 min 5 s from the battery pack and then itis stopped.
The voltage of the battery pack is usually in order of 14-16 V.
This voltage cannot be given directly as input to the micro-
controller because the supply voltage of the microcontroller
is 5 V. Hence the terminals of the battery are connected to a
step-down circuit, which consists of an op-amp and a volt-
age divider circuit (Fig. 11). This circuit is shown on a bread
board in Fig. 15. The step-down converter receives its power
from a 10V supply as shown in Fig. 15. The output from
the step-down circuit is monitored by the A/D pins of the

|

BATTERY PACK

L POWER SUPPLY TO

Fig. 15. Photograph of the complete SOC meter.

microcontroller for the last 12 s of the pulse, which acquires
the voltage of the battery pack during discharge (this time
period covers the maximum and minimum voltages required
as inputs for the fuzzy logic model). This acquired data is
stored in 24 memory locations of the SRAM of the microcon-
troller. As shown in the flow chart (Fig. 14) the maximum and
minimum values are obtained from the acquired data. These
serve as inputs to the fuzzy logic model, which predicts the
pulse number. But the pulse number predicted is in HEX for-
mat and is in the range from O0H to FFH. This is scaled down
to give the output, which is remaining pulse number, which
appears on the LCD display.

A stem plot predicting the error in the results of the prac-
tical implementation is shown in Fig. 16. A maximum of 3
pulses error is observed during the pulse numbers 18, 14 and
3. At all the remaining pulse numbers the error is below 3.
Especially during the end of discharge the error is considered
acceptable because the battery can be protected from over
discharge. Additional battery packs on which the model was

10

A~ O @

, & ?L&l 18][1[8[1]8]] ]88 80| | bbodse

Error at the pulse number
o
o

-10
0 5 10 15 20 25 30 35 40

Pulse number

Fig. 16. Stem plot indicating the error in the pulse number.
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not developed were tested and similar accuracy was obtained
on two other battery packs indicating the robustness of the
technique!

5. Conclusions

The main goal of the project was to develop a SOC/SOH
meter to estimate the condition of Li-ion battery packs to be
used in portable defibrillators at all temperatures. In this pro-
cess ac impedance and voltage recovery measurements were
obtained on the battery packs at room temperature and 0 °C.
Enough data was collected for the modeling of the voltage
recovery profiles which lead us to minimum voltage curves
and difference voltage curves. These curves show monotonic
variation of minimum voltage and maximum voltage with
cycle number. The parameters obtained from the preprocess-
ing of the data were utilized in developing fuzzy logic models
for predicting both the cycle number and remaining pulse
number for the battery packs at room temperature. Good
fuzzy logic models were developed, with an error below one
pulse to predict the number of remaining pulses and with an
error of 2.5 to predict the cycle number. These are derived
from the voltage recovery profiles of the battery pack at room
temperature cycled for a period of 82 cycles. Finally, due to
its practical importance, the model to predict the pulse num-
ber was chosen and successfully implemented in a Motorola
MC68HC12 microcontroller. An average error of £2 pulses
was achieved practically both on the battery pack used to
develop the model as well as in “blind testing” of battery
packs not used for model development.

The SOH model still needs to be implemented and tested.
Furthermore, models still need to be developed for other
temperatures. We are in the process of completing the data
collection at other temperatures. Once this has been done,
the models will be developed and implemented in the same
hardware platform and tested.
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